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Abstract

A new efficient numerical method for the solution of the time-independent Gross–Pitaevskii partial differential

equation in three spatial variables is introduced. This equation is converted into an equivalent fixed-point form and is

discretized using the collocation method at zeros of Legendre polynomials. Numerical comparisons with a state-of-the-

art method based on propagating the solution of the time-dependent Gross–Pitaevskii equation in imaginary time are

presented.
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1. Introduction

The subject of this paper is a numerical solution of the time-independent Gross–Pitaevskii equation [9]

�Duþ V ðx; y; zÞuþ ku3 ¼ ku; ð1Þ
u > 0; lim
jðx;y;zÞj!1

u ¼ 0;

Z 1

�1

Z 1

�1

Z 1

�1
uðx; y; zÞ2 dx dy dz ¼ 1 ð2Þ

written here in dimensionless form, with Du ¼ uxx þ uyy þ uzz. Both the function u and the eigenvalue k are

unknown. The parameter of non-linearity, k, is proportional to the number of atoms in the condensate, and

therefore can be very large. V ðx; y; zÞ is a given potential function, which in our numerical experiments is

taken to be the a-harmonic potential, V ðx; y; zÞ ¼ ax2 þ by2 þ cz2.
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As pointed out in [6,7,15], the lowest lying eigenstate (ground state) of this equation is important in the

numerical treatment of the Bose–Einstein condensates in the mean-field approximation. For large values of

k and for completely anisotropic potentials, which require a fully three-dimensional formulation, the so-

lution of the Gross–Pitaevskii equation presents serious numerical difficulties.

A standard numerical approach for finding the ground state is to integrate a time-dependent version of

(1),

i
ou
ot

¼ �Duþ V ðx; y; zÞuþ ku3; ð3Þ

in imaginary time. The ground state wavefunction is then a solution in the limit of large times, while the

energy k is proportional to the norm loss per integration step. A state-of-the-art algorithm of this type, the

Dual or Dirac Stepping method, was recently published by two of the co-authors of the present paper, [11].

A summary of this algorithm including the details of the complex time integration is presented in Section 2

and serves as an introduction to the main topic of the paper.

We devote the rest of the paper to a novel direct approach for the time-independent equation. It im-
plements the direct method of [15] and the expansion in the orthogonal polynomial basis, as in a discrete

variable approximation (DVR) of [2]. However, here we are able to avoid the biggest shortcoming of the

direct methods, that is, we manage to avoid the calculation of large (105 	 105 or larger) and sparse discrete

eigenvalue problem. For the sake of simplicity we outline our approach here in the introduction, for the

one-dimensional prototype only. Consider the following boundary value problem:

�u00ðxÞ þ ax2uðxÞ þ ku3ðxÞ ¼ kuðxÞ; ð4Þ
u > 0; uð�T Þ ¼ 0

Z T

�T
u2ðxÞ dx ¼ 1: ð5Þ

Its discretization leads to a non-linear system of equations in Rn,

Auþ k

u3
1

..

.

u3
n

264
375 ¼ ku: ð6Þ

This system of equations is converted into an equivalent fixed-point problem

u ¼ SðuÞ ¼ ðcI þ AÞ�1 � ðc

0B@ þ kÞ
u1

..

.

un

264
375� k

u3
1

..

.

u3
n

264
375
1CA: ð7Þ

It is shown in [4] that for the finite differences discretization, and for the appropriate choice of the

parameter c > 0 and the initial iterate x0, the fixed-point (FP) iteration ukþ1 ¼ SðukÞ converges to the po-

sitive solution of (6). A simple iteration on k then produces specific value of k for which the corresponding u
satisfies the normalization condition in (5). In this paper we apply the above fixed-point iteration to discrete

equations in Rn obtained via collocation at zeros of Legendre polynomials in three spatial variables. This
spectral technique preserves the symmetry present in the differential equation. This symmetry, combined

with the separable structure of the a-harmonic potential, allows us to work efficiently with the three-di-

mensional array representing the solution, u, without stretching it into a linear array. In fact, if N is the

number of mesh points per each spatial variable, then it takes OðN 4Þ flops (floating point operations) to

update the N 3 array. The number of mesh points, N , is modest. In our experiments reported in Section 3, it

was enough to use just up to 128 mesh points per variable, for values of k up to 50,000, to achieve accuracy
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close to double precision. The number of iterations is also not too large (see examples in Section 3), which,

combined with the efficiency of each iteration step, leads to a memory efficient and fast algorithm for the

solution of the time-independent Gross–Pitaevskii equation in three spatial variables.

The paper is organized as follows. In Section 2 the Dirac or Dual Stepping algorithm (DS-method) of

[11] is outlined. In Section 3 we describe in detail the new fixed-point type algorithm. In Section 4 we

compare the numerical results of the fixed-point algorithm to the DS-method and Thomas–Fermi ap-

proximation. In Appendix A we give in more detail the collocation technique at Legendre points and in

Appendix B we explain the Thomas–Fermi approximation.
2. Dual or Dirac Stepping method

The DS-method was suggested by Ko�sstrun and Javanainen [11], as a possible replacement for the split-

step class of methods, see [12,17,18] and references therein, for integration of a time-dependent Schr€oodinger
equation or the systems thereof.

The idea is to use a Hamiltonian formulation of the quantum physics and conveniently choose a linear
time-independent operator, that plays the role of the operator H0 in, so-called, interaction picture of

quantum physics, [13]. Using this operator, a time domain of the initial value problem is translated to the

interval ½0;Dt�, and solved there using an ODE solver. Upon the completion of integration, the solution is

translated back to the absolute time. The method was developed for tackling the Gross–Pitaevskii equation

and the systems thereof. We describe the method using the more general formulation and notation of

[11] which we then modify in order to obtain the solution of the dimensionless Gross–Pitaevskii equation

(3).

2.1. Interaction picture

For simplicity, consider a one-dimensional initial value problem, involving a linear time-independent

Hamiltonian H0 acting on wave function uðt; xÞ; together with some, not necessary linear, operator w; that
may depend on the wave function uðt; xÞ:

i
ou
ot

¼ H0u þ w½t; x;uðt; xÞ�;

uð0; xÞ ¼ f ðxÞ; x 2 ½�L; L�:
ð8Þ

The Hamiltonian H0 contains a kinetic energy operator, �ð�h2=2mÞr2, and possibly a potential energy

V0ðxÞ, neither of which explicitly depends on the wave function u. For notational convenience we do not

explicitly denote dependence on x, and write

W ½t;u� ¼ w½t; x;uðt; xÞ�: ð9Þ

Observe that the domain of the problem has already been truncated to ½�L; L� and that appropriate
boundary conditions were imposed on the wave function. The interaction picture in quantum mechanics

[13] is a linear transformation, which uses operator u0ðtÞ ¼ e�iH0t, to formally eliminate H0 from Eq. (8) by

replacing the wave function uðtÞ; with ~uu using the identity

uðtÞ ¼ e�iH0t ~uuðtÞ ¼ u0ðtÞ~uuðtÞ; ð10Þ

so that the equation for the new wave function ~uuðt; xÞ becomes

i
o~uu
ot

¼ eiH0tW ½t; e�iH0t ~uu�: ð11Þ
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In quantum physics this transformation is used as the basis of perturbational approach, for weakly

perturbed systems, when such makes sense.

2.2. Time translation and integration

Let us first examine the equation of propagation of a wave function over the time interval ½tk; tkþ1�, for

some k 2 N . For 06 s6Dt; we have

i
o~uuðtk þ sÞ

os
¼ eiH0ðtkþsÞW tk

h
þ s; e�iH0ðtkþsÞ ~uuðtk þ sÞ

i
: ð12Þ

We introduce a new wave function ûuðsÞ which serves as a dummy variable 1 for the time integration. It is

defined by

ûuðsÞ ¼ e�iH0tk ~uuðtk þ sÞ; ð13Þ

whose evolution is described by

i
oûuðsÞ
os

¼ eiH0sW tk
h

þ s; e�iH0sûu
i
; ð14Þ

with the initial conditions

ûuð0Þ ¼ e�iH0tk ~uuðtkÞ ¼ uðtkÞ: ð15Þ

The operator W is a contact operator, as described in Eq. (9), so the time integration of Eq. (14) can be

performed using a standard ODE integration method [16].

As a result of the integration the array ûuðdtÞ is obtained. It can be shown that its relationship to the

function uðtj þ dtÞ ¼ uðtkþ1Þ is given by

uðtkþ1Þ ¼ uðtk þ dtÞ ¼ e�iH0dtûuðdtÞ: ð16Þ

Application of Runge–Kutta fourth order integration formulae to Eq. (14) introduces the quantities

fY 0
i gi¼1;...;4, defined by

Y 0
1 ¼ �iW ½tk;uðtkÞ�;

Y 0
2 ¼ �iW tk

�
þ dt

2
; u0

dt
2

� �
uðtkÞ
�

þ dt
2
Y 0

1

��
;

Y 0
3 ¼ �iW tk

�
þ dt

2
; u0

dt
2

� �
uðtkÞ þ

dt
2
Y 0

2

�
;

Y 0
4 ¼ �iW tk

�
þ dt; u0

dt
2

� �
u0

dt
2

� �
uðtkÞ

�
þ dtY 0

3

��
:

ð17Þ

Using this in Eq. (16) yields the final integration formula

uðtk þ dtÞ ¼ u0ðdtÞ uðtkÞ
�

þ dt
6
Y 0

1

�
þ dt

3
u0

dt
2

� �
Y 0

2

�
þ Y 0

3

�
þ dt

6
Y 0

4: ð18Þ
1 Using this function as the dummy variable renders its indexing with respect to the absolute time tj; j ¼ 1; . . . ;M unnecessary. As it

follows from the scheme, its values are discarded at the end of the evolution by dt once the wave function uðtk þ dtÞ is calculated.
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We identify two standard versions of the DS-integration formula regarding the way the operator u0ðsÞ
acts on the wave function:

• DS2, where Cayley approximation [10,14] is used in calculation of effects of u0ðsÞ on u

1
�

þ i
s
2
H0

�
uðt þ sÞ ¼ 1

�
� i

s
2
H0

�
uðtÞ; ð19Þ

yielding the second order accuracy in time, and

• DS4, which consists of taking H0 ¼ �D in expression for u0ðsÞ, and using the Fast Fourier Transform to

evaluate the evolution of wave function due to it. This replacement yields the fourth order accuracy in

time, and is thus called DS4-formula.

Numerical results regarding the DS-method presented in this manuscript are obtained using the DS2-

formula with H0 ¼ �D.

2.3. The Gross–Pitaevskii equation

We present the results for calculation of the lowest eigenvalue of the system described by the Gross–
Pitaevskii equation, see e.g. [6],

iosu ¼ ð�D þ ax2 þ by2Þu þ kjuj2u ð20Þ

using the method. The method was modified so that the propagation is done in imaginary instead of in real

time. Under those circumstances the wave function loses its norm in each iteration. Renormalization of the

solution forces the system to its lowest lying stationery state (if such exists) in the limit of infinite evolution
times. The lowest lying eigenvalue k is given as the limit

k ¼ lim
it!1

1

idt
1

juðit þ idtÞj

�
� 1

�
: ð21Þ

For our calculation the domain was ½�10; 10� 	 ½�10; 10� with a square grid of 129	 129 points. We used
the finite differences for the operator u0 ¼ u0;xu0;y with the Cayley expansion. Time integration was per-

formed using the Runge–Kutta fourth order method.
3. Fixed-point iteration

The fixed-point iteration described below is, in principle, applicable to any discretization of the Gross–

Pitaevskii equation. In this paper we suggest collocation at zeros of Legendre polynomials. Besides the
usual advantages of using a spectral-type method, such as high accuracy at low cost [8], this particular

method leads to a symmetric discretization, which becomes critical for two and three spatial variables. The

discretization technique is described in some detail in Appendix A. Here it is gradually applied to the case of

one, two, and three spatial variables.

3.1. The one variable case

The discretization of the differential equation (4) is described in Appendix A. It leads to a non-linear

system of equations in Rn,

AV þ k
W �2V 3 ¼ kV : ð22Þ
T
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To formulate a fixed-point iteration, we add the matrix cI , where I is an identity matrix of size N 	 N
and c > 0, on both sides of Eq. (22)

ðAþ cIÞV ¼ ðcþ kÞV � k
T
W �2V 3: ð23Þ

The reason for adding a positive multiple of I to the both sides of (22) is that (for the finite differences

approximation) with the appropriate choice of c > 0 and the initial iterate V0, the iteration below becomes

monotone and is guaranteed to converge. For details, see [4,5].

For the present discretization we do not have a convergence proof as yet, but in all of our numerical

experiments the iteration converged for an appropriate choice of c. Next, since A is symmetric, we can

decompose it as A ¼ QADAQT
A , where DA is the diagonal matrix of eigenvalues of A, and QA is the orthogonal

matrix of the corresponding eigenvectors. We now have

QAðcI þ DAÞQT
AV ¼ ðcþ kÞV � k

T
W �2V 3; ð24Þ

or

V ¼ QAðcI þ DAÞ�1QT
A ðc
�

þ kÞV � k
T
W �2V 3

�
; ð25Þ

where

DA ¼
dA
1 . . . 0

..

. . .
. ..

.

0 . . . dA
N

264
375; ðcI þ DAÞ�1 ¼

1
cþdA

1

. . . 0

..

. . .
. ..

.

0 . . . 1
cþdAN

2664
3775;

and the iteration is performed as follows:

Vnext ¼ QAðcI þ DAÞ�1QT
A ðc
�

þ kÞVprev �
k
T
W �2V 3

prev

�
: ð26Þ

We remark that the eigenvalue decomposition of A is not needed in the case of one spatial variable, since

one could simply solve the equation

ðcI þ AÞVnext ¼ ðcþ kÞVprev �
k
T
W �2V 3

prev: ð27Þ

This decomposition becomes critical, however, for two and three spatial dimensions and therefore is

introduced here as well.

3.2. The two variable case

In two spatial variables, we consider the equation

�uxxðx; yÞ � uyyðx; yÞ þ V ðx; yÞuðx; yÞ þ ku3ðx; yÞ ¼ kuðx; yÞ ð28Þ
ujC ¼ 0;

Z T

�T

Z T

�T
u2ðx; yÞ dx dy ¼ 1: ð29Þ

Here C is the boundary of the square fðx; yÞj � T 6 x; y6 Tg, and V ðx; yÞ ¼ ax2 þ by2. In this case we ap-

proximate the function uðx; yÞ as follows:
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uðx; yÞ ¼
XN�1

i;j¼0

aijpiðxÞpjðyÞ: ð30Þ

We derive the discretization of this equation using the technique described in Appendix A. We assume

the discretization mesh that employs the Legendre points in both spatial directions and therefore has the

form

fðxk; ymÞ j k;m ¼ 1; . . . ;N þ 1g; ð31Þ

where xk ¼ yk, k ¼ 1; . . . ;N are the zeros of PNðxÞ multiplied by T .

Let

uðxk; ymÞ ¼
XN�1

k;m¼0

aijpiðxkÞpjðymÞ ð32Þ

and let U ¼ ½ukm�Nþ1

k;m¼1 be the matrix of the values of the function u at the Legendre points: ukm ¼ uðxk; ymÞ: If
A ¼ ½aij�N�1

i;j¼0; then

U ¼ PAPT; ð33Þ

where P is the same as in the one-dimensional case. It follows from (A.14) that

A ¼ PTW 2UW 2P ; ð34Þ

where W is the matrix of Legendre weights. Following the same approach as in the one-dimensional case,

we obtain the following discretization of Eq. (28)

� 1

T 2
ðPDPTW 2ÞU � U

1

T 2
PDPTW 2

� �T

þ a

x2
1 0

. .
.

0 x2
N

264
375U þ bU

y2
1 0

. .
.

0 y2
N

264
375þ kU 3 ¼ kU :

ð35Þ

Here �ð1=T 2ÞðPDPTW 2ÞU represents the discretization of uxx, and is identical to the one variable case for

each fixed y. The second term corresponds to uyy .
Multiplying (35) by

ffiffiffiffi
T

p
W on both sides and introducing the notations

V ¼ T

x1 0

. .
.

0 xN

264
375U x1 0

. .
.

0 xN

264
375 ¼ TWUW ; ð36Þ
A ¼ � 1

T 2
ðWPDPTW Þ þ a

x2
1 0

. .
.

0 x2
N

264
375 ð37Þ

and

B ¼ � 1

T 2
ðWPDPTW Þ þ b

y2
1 0

. .
.

0 y2
N

264
375; ð38Þ
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we get

AV þ VBþ k
T 2

W �2V 3W �2 ¼ kV ; ð39Þ

where both A and B are symmetric matrices. As before, the monotone fixed-point iteration is obtained

by adding a multiple of the matrix V , cV ðc > 0Þ to both sides of (39) and by the orthogonal de-

composition of matrices A and B, A ¼ QADAQT
A , B ¼ QBDBQT

B . Here DA, DB are the diagonal matrices of

eigenvalues of A and B correspondingly, and QA,QB are the orthogonal matrices of the corresponding

eigenvectors. Thus

cV þ QADAQT
AV þ VQBDBQT

B ¼ ðcþ kÞV � k
T 2

W �2V 3W �2: ð40Þ

Multiplying this equation by QT
A on the left and by QB on the right, we obtain

cQT
AVQB þ DAQT

AVQB þ QT
AVQBDB ¼ QT

A ðc
�

þ kÞV � k
T 2

W �2V 3W �2

�
QB: ð41Þ

Letting eVV ¼ QT
AVQB; we can write (41) as

ceVV þ DA
eVV þ eVV DB ¼ QT

A ðc
�

þ kÞV � k
T 2

W �2V 3W �2

�
QB: ð42Þ

If the entries of the matrix eVV are denoted by evvij and

DA ¼
dA
1 0

. .
.

0 dA
N

2664
3775; DB ¼

dB
1 0

. .
.

0 dB
N

2664
3775; ð43Þ

then for each i; j ¼ 1; . . . ;N ;

cevvij þ dA
i evvij þ dB

j evvij ¼ QT
A ðc
��

þ kÞV � k
T 2

W �2V 3W �2

�
QB

�
ij

ð44Þ

or

evvij ¼ 1

cþ dA
i þ dB

j

 !
QT

A ðc
��

þ kÞV � k
T 2

W �2V 3W �2

�
QB

�
ij

: ð45Þ

In the matrix form we write

eVV ¼ DABs QT
A ðc
��

þ kÞV � k
T 2

W �2V 3W �2

�
QB

�
: ð46Þ

In this formula ½DAB�ij ¼ 1=ðcþ dA
i þ dB

j Þ and s denotes the componentwise or Schur product of the ma-

trices. Therefore in the two-dimensional case the fixed-point iteration has the form

Vnext ¼ QA DABs QT
A ðc
���

þ kÞVprev �
k
T 2

W �2V 3
prevW

�2

�
QB

��
QT

B : ð47Þ
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3.3. The three variable case

Finally, let us explain how this technique works in the three-dimensional case, in the simplest case of a

spherically symmetric potential V (so that all the scales are equal, Tx ¼ Ty ¼ Tz ¼ T ),

�uxx � uyy � uzz þ ðax2 þ by2 þ cz2Þuðx; y; zÞ þ ku3ðx; y; zÞ ¼ kuðx; y; zÞ; ð48Þ
ujC ¼ 0;

Z T

�T

Z T

�T

Z T

�T
u2ðx; y; zÞ dx dy dz ¼ 1; ð49Þ

where C is the boundary of the cube �T 6 x; y; z6 T .

Suppose that

uðx; y; zÞ ¼
XN�1

i;j;k¼0

aijkpiðxÞpjðyÞpkðzÞ: ð50Þ

and let

U ¼ ½uijk�Ni;j;k¼1; uijk ¼ uðxi; yj; zkÞ; ð51Þ

where the meshpoints, xi; yj; zk; i; j; k ¼ 1; . . . ;N ; xi ¼ yi ¼ zi, are the zeros of the N th Legendre polynomial,

PN ðxÞ, multiplied by the factor T . Since U is now a three-dimensional array of the size N 	 N 	 N , we need

to define the action of an arbitrary matrix A of size N 	 N on U . By AxðUÞ we denote the three-dimensional

array given for j; k ¼ 1; . . . ;N by

AxðUÞ1;j;k
..
.

AxðUÞN ;j;k

2664
3775 ¼ A

u1;j;k

..

.

uN ;j;k

2664
3775; ð52Þ

where the subscript x stands for the direction of this action, i.e., in this case a matrix A is applied in the

direction of the x-variable. The action of the matrix A in two other directions, AyðUÞ and AzðUÞ; is

defined similarly. Notice that this operation is commutative, meaning that if B is another N 	 N matrix,
then

AHðB �HHðUÞÞ ¼ B �HHðAHðUÞÞ: ð53Þ

Here H and �HH stand for any choice of the directions x; y or z. This is just the discrete analog of the fact that

a mixed partial derivative of a smooth function does not depend on the ordering of variables in which

partial derivatives are taken. For the notational simplicity from now on we omit the repeated use of pa-

rentheses. After the discretization of Eq. (48) we have

� 1

T 2
½PDPTW 2�xðUÞ� 1

T 2
½PDPTW 2�yðUÞ� 1

T 2
½PDPTW 2�zðUÞþ aWxðUÞþ bWyðUÞþ cWzðUÞþ kU 3 ¼ kU :

ð54Þ

Here again, ð1=T 2Þ½PDPTW 2�xðUÞ represents the discretization of uxx and similarly for uyy and uzz. To

symmetrize this equation we apply
ffiffiffiffi
T

p
Wzð

ffiffiffiffi
T

p
Wyð

ffiffiffiffi
T

p
Wxð�ÞÞÞ to Eq. (54) and use the substitution

V ¼ T 3=2WzWyWxðUÞ to obtain

AxðV Þ þ ByðV Þ þ CzðV Þ þ
k
3
W �2

z W �2
y W �2

x ðV 3Þ ¼ kV : ð55Þ

T
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In this formula, the matrices A and B are the same as in the two-dimensional case and the matrix C is

C ¼ � 1

T 2
ðWPDPTW Þ þ c

z21 0

. .
.

0 z2N

2664
3775: ð56Þ

As before, we add a multiple of V , cV ðc > 0Þ to both sides of Eq. (55)

cV þ AxðV Þ þ ByðV Þ þ CzðV Þ ¼ ðcþ kÞV � k
T 3

W �2
z W �2

y W �2
x ðV Þ: ð57Þ

With A ¼ QADAQT
A , B ¼ QBDBQT

B and C ¼ QCDCQT
C being the orthogonal decompositions of the matrices

A, B and C respectively, we can rewrite the above equation as follows,

cV þ QADAQT
A

� �
x
ðV Þ þ QBDBQT

B

� �
y
ðV Þ þ QCDCQT

C

� �
z
ðV Þ ¼ ðcþ kÞV � k

T 3
W �2

z W �2
y W �2

x ðV Þ ð58Þ

or

cV þ QAxDAxQT
AxðV Þ þ QByDByQT

ByðV Þ þ QCzDCzQT
CzðV Þ ¼ ðcþ kÞV � k

T 3
W �2

z W �2
y W �2

x ðV Þ: ð59Þ

We apply now consecutively the matrix QT
A in x-direction, QT

B in the y-direction, QT
C in the z-direction to

(59) and introduce the notation eVV ¼ QT
CzQ

T
ByQ

T
AxðV Þ. Thus

ceVV þ DAx
eVV þ DBy

eVV þ DCz
eVV ¼ QT

CzQ
T
ByQ

T
Ax ðc
�

þ kÞV � k
T 3

W �2
z W �2

y W �2
x ðV Þ

�
: ð60Þ

Comparing ði; j; kÞ entries on both sides we find that

c
�

þ dA
i þ dB

j þ dC
k

�eVVijk ¼ QT
CzQ

T
ByQ

T
Ax ðc
��

þ kÞV � k
T 3

W �2
z W �2

y W �2
x ðV Þ

��
ijk

: ð61Þ

Hence, in three spatial variables the fixed-point iteration can be written as

Vnext ¼ QAxQByQCz Ds QT
CzQ

T
ByQ

T
Ax ðc
���

þ kÞVprev �
k
T 3

W �2
z W �2

y W �2
x ðVprevÞ

���
; ð62Þ

where s is the componentwise product and where

½D�ijk ¼
1

cþ dA
i þ dB

j þ dC
k

:

Despite the fact that the formula given above has a complicated structure, actual programming of the

three-dimensional iteration is quite similar to the programming of the two-dimensional model due to the

eigenvalue decomposition technique used.

The fact that A;B, and C are symmetric is very important here. It enables us to perform the the iteration

(62) in OðN 4Þ floating point operations. Here N 4 is the number of flops needed to multiply an N 	 N matrix

by N 2 columns of an N 	 N 	 N array. Since in particular computing environments the cost of a matrix-

vector multiplication is often less than N 2, the cost of performing the iteration (62) is reduced accordingly.

This is to be compared with the cost of solving (57) directly by stretching V into a linear array of length N 3

and using Gaussian elimination. The cost would become a staggering OðN 9Þ flops, unless some use is made

of the special structure of the N 3 	 N 3 matrix representing the sum of linear transformations Ax, By and Cz.
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Algorithm 1 summarizes our previous discussion:

• Legendre points are found as the eigenvalues of the matrix (A.8) and then translated onto the interval

½�T ; T �.
• The matrix P consisting of the values of the first N normalized Legendre polynomials at the Legendre

points is found. For this the recursive formula (A.5) is used.

• The matrix of The Gauss–Legendre weights is obtained using the relation ðW �1Þ2 ¼ PpT.

• Formulas (A.17)–(A.27) are used to calculate matrix D that transforms the coefficients a0; . . . ; aN of the

function UðX Þ into the coefficients of its second derivative.
• Matrices A, B and C are constructed as described in (37), (38) and (56).

• Orthogonal decomposition of the matrices A;B and C : A ¼ QADAQT
A , B ¼ QBDBQT

B and C ¼ QCDCQT
C is

obtained.

• The iteration (62) is set up.

• The solution (and its norm) is found.

For a given value of k and sufficiently large choice of the constant c > 0, this algorithm generates a

sequence of three-dimensional arrays that converges to the solution of the eigenproblem (48).

Note that larger values of k require larger values of the constant c for the algorithm to converge. For
example, in two-dimensional situation for k ¼ 10 and V ðx; yÞ ¼ ax2 þ by2 the algorithm converges if we

take c ¼ 10. But for k ¼ 100 the algorithm diverges if c ¼ 10. We need to increase the value of c to at least

c ¼ 30 to make the procedure work. Increasing c, however, affects the rate of convergence of the algorithm.

For example, in two-dimensional case for k ¼ 1 and V ðx; yÞ ¼ 0:2x2 þ 0:7y2, it takes about 60 iterations to

obtain a single precision result with c ¼ 0:1. The number of iterations approximately doubles for c ¼ 1. The

same result is obtained in about 700 and 6000 iterations if c ¼ 10 and c ¼ 100, respectively. Typical graphs

of solutions are shown in Figs. 1 and 2. Fig. 3 gives some insight into why the choice of Legendre mesh

points is so effective. One can see that these points are clustered towards the boundaries where the function
has steepest slopes, and there are far fewer points in the middle, where the function is more flat. Therefore a

relatively small number of points is needed for the discretization. To achieve a double precision accuracy,

we typically use 32–128 points depending on the size of the domain. While advantageous at zero tem-

perature, the choice of Legendre mesh may not be the most appropriate at non-zero temperatures. There, as

pointed out by [1], the presence of thermal atoms lengthens the tail at the edge of the condensate [3].
Fig. 1. k ¼ 50, V ðx; yÞ ¼ 0:2x2 þ 0:7y2.



Fig. 2. k ¼ 500, V ðx; yÞ ¼ 0:2x2 þ 0:7y2.

Fig. 3. Distribution of Legendre points in a square domain.
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So far we have described how to compute the positive eigenfunction corresponding to a given eigenvalue

k. Our goal, however, is to obtain a positive solution of a particular magnitude. Thus we seek kH > 0 such

that the corresponding solution, uðkHÞ, is of the unit norm

kuðkHÞk2 ¼
Z T

�T

Z T

�T

Z T

�T
u2ðx; y; zÞ dx dy dz ¼ 1: ð63Þ

Our numerical experiments show that norm of solution kuðkÞk is a monotone function of k: if k1 6 k2;
then kuðk1Þk6 kuðk2Þk. To approximate the value of kH that corresponds to the solution of the unitary



Fig. 4. Normalization strategy.
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norm, we apply the following normalization strategy. Using the Thomas–Fermi estimates (see Appendix B),

we find initial values of k1 and k2 ðk1 > k2Þ, large enough so that both h1 ¼ kuðk1Þk > 1 and

h2 ¼ kuðk2Þk > 1. Using Algorithm 1 we compute h1 ¼ kuðk1Þk and h2 ¼ kuðk2Þk and then construct the

unique parabola with a given axis of symmetry through ðh1; k1Þ and ðh2; k2Þ, see Fig. 4. We find the in-

tersection of this parabola with the horizontal line h ¼ 1, which gives a new approximation k3 to the value

of kH. We use algorithm 1 to compute uðk3Þ and repeat. A more formal description is given in terms of

Algorithm 2.
• Using the Thomas–Fermi approximation, chose k2 < k1 large enough such that the norms of the corre-

sponding solutions, kuðk2Þk and kuðk1Þk, are greater than 1,

• while jh2 � 1j > eps do

s construct a parabola that goes through the points with coordinates ðk1; h2
1Þ and ðk2; h2

2Þ:
k ¼ k2 þ ððk1 � k2Þ=ðh2

1 � h2
2ÞÞðh2 � h2

2Þ;
s find the intersection of this parabola with the horizontal line h ¼ 1, and find the corresponding

k : k3 ¼ k2 þ ððk1 � k2Þ=ðh2
1 � h2

2ÞÞð1 � h2
2Þ;

s use Algorithm 1 to find the corresponding solution uðk3Þ and its norm h3, and set k1 ¼ k2; h1 ¼ h2;
k2 ¼ k3; h2 ¼ h3;

• done

Algorithm 2 is quite efficient. It typically takes 7–10 iterations only to converge.
4. Numerical experiments

Since no analytic solutions of the Gross–Pitaevskii equation are known to us, we use the Dual or Dirac
Stepping (DS) method in two dimension as well as the Thomas–Fermi (TF) approximation for numerical

comparisons. In three dimensions we can use TF only, because the results of the DS method are no longer

available. For the stopping criterion of the fixed-point iteration we use the size of the residual, which is

found by substituting the computed eigenvalue k and the corresponding eigenfunction into the Gross–

Pitaevskii equation.



Table 1

Two-dimensional data

k DS FP TF

1 1.03 1.036706 0.488058

10 1.82 1.819286 1.543377

100 5.00 4.999394 4.880587

1000 15.49 15.524270 15.433771

3000 26.79 26.744547 26.732076

10,000 48.89 48.993929 48.805871

Table 2

Three-dimensional data

k FP TF —FP–TF—

100 3.752857 3.170947 0.5819

1000 8.263033 7.965060 0.2980

3000 12.574191 12.360543 0.2136

10,000 20.154451 20.007326 0.1471

30,000 31.150280 31.048281 0.1020

50,000 38.177264 38.087026 0.0902
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The computation was performed on a DELL Workstation with the operating system Red Hat Linux 5.2

in double precision, and used 64–128 points in each spatial dimension, depending on the size of the domain.

The domain to which the equation is truncated is chosen according to the Thomas–Fermi approximation,

that is, its size increases with increasing value of k.
In two dimensions we use the potential V ðx; yÞ ¼ ax2 þ by2 with a ¼ 0:2 and b ¼ 0:7. Numerical results

are summarized in Table 1. Although the two numerical approaches are quite different, the results show

good agreement. To calculate the FP-column we performed the calculation for a number of of Legendre

points. The values given in the table have all of the figures significant, as determined by increasing the

number of Legendre points. In three dimensions we use V ðx; y; zÞ ¼ 0:3x2 þ 0:6y2 þ 0:5z2. The results are

shown in Table 2. As expected, the bigger is the coefficient k, the better is the agreement between the

Thomas–Fermi estimates and our numerical results.
Appendix A. Discretization of the Gross–Pitaevski equation using Legendre polynomials

We consider the discretization of the truncated Gross–Pitaevskii equation

�u00ðxÞ þ ax2uðxÞ þ ku3ðxÞ ¼ kuðxÞ; ðA:1Þ
uð�T Þ ¼ 0;

Z T

�T
u2ðxÞ dx ¼ 1 ðA:2Þ

using Legendre polynomials. Let PnðxÞ, n ¼ 0; 1; . . . ; denote Legendre polynomials of degree n. These

polynomials are well documented in the literature. Properties which are relevant for our purpose can be

found in [8]. Legendre polynomials are orthogonal on the interval ½�1; 1� and satisfy the recursion

ðnþ 1ÞPnþ1ðxÞ ¼ ð2nþ 1ÞxPnðxÞ � nPn�1ðxÞ; ðA:3Þ

where P0ðxÞ � 1 and P1ðxÞ ¼ x: Also Pnð�1Þ ¼ ð�1Þn. To normalize these polynomials scaling by the factor

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ=2

p
is needed: pnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ=2

p
PnðxÞ. Now pnðxÞ, n ¼ 1; . . . ;N þ 1; are such that
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Z 1

�1

p2
nðtÞ dt ¼ 1;

Z 1

�1

pnðtÞpkðtÞ dt ¼ 0; k 6¼ n; k; n ¼ 0; 1; . . . ; ðA:4Þ

and

ðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2nþ 3

r
pnþ1ðxÞ ¼ ð2nþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2nþ 1

r
pn � n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2n� 1

r
pn�1: ðA:5Þ

Let

uðxÞ ¼
XNþ1

i¼0

aðNþ2Þ
i piðxÞ; �16 x6 1; ðA:6Þ

and let

uðxðNþ2Þ
k Þ ¼

XNþ1

i¼0

aðNþ2Þ
i piðxðNþ2Þ

k Þ; k ¼ 1; . . . ;N þ 2; ðA:7Þ

where xðNþ2Þ
1 ; xðNþ2Þ

2 ; . . . ; xðNþ2Þ
Nþ2 are zeros of pNþ2ðxÞ, which lie in ð�1; 1Þ. These points are a highly effective

choice of collocation points [8]. They can be found as eigenvalues of a known tridiagonal matrix [16]

0 c2 0 . . . . . . 0

c2 0 . .
. . .

. . .
. ..

.

0 . .
. . .

.
ci . .

. ..
.

..

. . .
.

ci 0 . .
.

0

..

. . .
. . .

. . .
. . .

.
cNþ2

0 . . . . . . 0 cNþ2 0

2666666666664

3777777777775
; ci ¼

i � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i� 3Þð2i � 1Þ

p : ðA:8Þ

In the matrix form (A.7) becomes

uðxðNþ2Þ
1 Þ
..
.

uðxðNþ2Þ
Nþ2 Þ

264
375 ¼

p0ðxðNþ2Þ
1 Þ . . . pNþ1ðxðNþ2Þ

1 Þ
..
. . .

. ..
.

p0ðxðNþ2Þ
Nþ2 Þ . . . pNþ1ðxðNþ2Þ

Nþ2 Þ

264
375 aðNþ2Þ

0

..

.

aðNþ2Þ
Nþ1

264
375 ¼ PNþ2

aðNþ2Þ
0

..

.

aðNþ2Þ
Nþ1

264
375: ðA:9Þ

Hence,

aðNþ2Þ
0

..

.

aðNþ2Þ
Nþ1

264
375 ¼ P�1

Nþ2

uðxðNþ2Þ
1 Þ
..
.

uðxðNþ2Þ
Nþ2 Þ

264
375: ðA:10Þ

To avoid the inversion of the matrix PNþ2 in (A.10) we show that PNþ2 has orthogonal rows. First notice

that

Z 1

�1

u2ðtÞ dt ¼
XNþ1

i¼0

ðaðNþ2Þ
i Þ2 ¼ ½uðxðNþ2Þ

1 Þ; . . . ; uðxðNþ2Þ
Nþ2 Þ�P�T

Nþ2P
�1
Nþ2

u xðNþ2Þ
1

� �
..
.

u xðNþ2Þ
Nþ2

� �
26664

37775; ðA:11Þ
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where P�T
Nþ2 ¼ ðP�1

Nþ2Þ
T
. Alternatively, employing Gauss–Legendre quadrature gives us

Z 1

�1

u2ðtÞ dt ¼
XNþ2

i¼1

x2
i u

2ðxðNþ2Þ
i Þ ¼ ½uðxðNþ2Þ

1 Þ; . . . ; uðxðNþ2Þ
Nþ2 Þ�

x2
1 . . . 0

..

. . .
. ..

.

0 . . . x2
Nþ2

2664
3775

uðxðNþ2Þ
1 Þ
..
.

uðxðNþ2Þ
Nþ2 Þ

2664
3775; ðA:12Þ

where x1; . . . ;xNþ2 are the Gauss–Legendre weights. Since the vector ½uðxðNþ2Þ
1 Þ; . . . ; uðxðNþ2Þ

Nþ2 Þ� is arbitrary, it

follows by matching Eqs. (A.11) and (A.12) that

P�T
Nþ2P

�1
Nþ2 ¼

x2
1 . . . 0

..

. . .
. ..

.

0 . . . x2
Nþ2

264
375 ¼ W 2; ðA:13Þ

and hence,

P�1
Nþ2 ¼ PT

Nþ2W
2: ðA:14Þ

The matrix PNþ2 is computed using the recursion (A.5), the matrix of the Legendre weights, W , is found

as ðW �1Þ2 ¼ PNþ2PT
Nþ2, and (A.10) becomes

aðNþ2Þ
0

..

.

aðNþ2Þ
Nþ1

2664
3775 ¼ PT

Nþ2W
2

uðxðNþ2Þ
1 Þ
..
.

uðxðNþ2Þ
Nþ2 Þ

2664
3775: ðA:15Þ

Now if uðxÞ is given by (A.7), then its second derivative u00ðxÞ can be written as

u00ðxÞ ¼
XN�1

j¼0

bjpjðxÞ; ðA:16Þ

where the coefficients bj of the expansion (A.16) can be expressed in terms of the coefficients aðNþ2Þ
i using the

following formula, see for instance [8]:

bj ¼ j
�

þ 1

2

� XNþ1

i¼jþ2;
jþi even

½iðiþ 1Þ � jðjþ 1Þ�aðNþ2Þ
i : ðA:17Þ

Clearly only the first N Legendre polynomials are represented in this case and therefore

b0

b1

..

.

bN�1

0BBBB@
1CCCCA ¼ �DD

aðNþ2Þ
0

aðNþ2Þ
1

..

.

aðNþ2Þ
N�1

aðNþ2Þ
N

aðNþ2Þ
Nþ1

0BBBBBBBBBB@

1CCCCCCCCCCA
; ðA:18Þ

where �DD is N 	 ðN þ 2Þ. It is convenient to partition matrix �DD as follows:

�DD ¼ ½ �DD1;U�; ðA:19Þ
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where �DD1 is an N 	 N matrix and U is an N 	 2 matrix consisting of the last two columns of �DD. Using

boundary conditions, uð�1Þ ¼ 0, and the fact that pið�1Þ ¼ ð�1Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i þ 1Þ=2

p
, we obtain that

XNþ1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
2iþ 1

2

r
aðNþ2Þ
i ¼ 0; ðA:20Þ

and

XNþ1

i¼0

ð�1Þi
ffiffiffiffiffiffiffiffiffiffiffiffi
2i þ 1

2

r
aðNþ2Þ
i ¼ 0: ðA:21Þ

Solving for aðNþ2Þ
N , aðNþ2Þ

Nþ1 we have

aðNþ2Þ
N ¼ �

XN=2�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4iþ 1

2N þ 1

r
aðNþ2Þ

2i ; ðA:22Þ
aðNþ2Þ
Nþ1 ¼ �

XN=2�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4iþ 3

2N þ 3

r
aðNþ2Þ

2iþ1 ðA:23Þ

or in the matrix form

aðNþ2Þ
N

aðNþ2Þ
Nþ1

 !
¼ W

aðNþ2Þ
0

..

.

aðNþ2Þ
N�1

0B@
1CA; ðA:24Þ

where

W ¼ �

ffiffiffiffiffiffiffiffi
1

2Nþ1

q ffiffiffiffiffiffiffiffi
5

2Nþ1

q
. . .

ffiffiffiffiffiffiffiffi
2N�3
2Nþ1

q
ffiffiffiffiffiffiffiffi

3
2Nþ3

q ffiffiffiffiffiffiffiffi
7

2Nþ3

q
. . .

ffiffiffiffiffiffiffiffi
2N�1
2Nþ3

q
24 35: ðA:25Þ

Now (A.19) becomes

b0

b1

..

.

bN�1

0BBBB@
1CCCCA ¼ �DD1

aðNþ2Þ
0

aðNþ2Þ
1

..

.

aðNþ2Þ
N�1

0BBBBB@

1CCCCCAþ UW

aðNþ2Þ
0

aðNþ2Þ
1

..

.

aðNþ2Þ
N�1

0BBBBB@

1CCCCCA ¼ �DD1

�
þ UW

� aðNþ2Þ
0

aðNþ2Þ
1

..

.

aðNþ2Þ
N�1

0BBBBB@

1CCCCCA: ðA:26Þ

With the notation D ¼ �DD1 þ UW, we write

b0

b1

..

.

bN�1

0BBBB@
1CCCCA ¼ D

aðNþ2Þ
0

aðNþ2Þ
1

..

.

aðNþ2Þ
N�1

0BBBBB@

1CCCCCA: ðA:27Þ

Here D is a square N 	 N matrix which transforms the first N coefficients aðNþ2Þ
0 ; . . . ; aðNþ2Þ

N�1 of the function

uðxÞ, uð�1Þ ¼ 0, into the coefficients of the second derivative of the function uðxÞ. Notice also that
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b0

b1

..

.

bN�1

0BBB@
1CCCA ¼ P�1

N

u00ðxðNÞ
1 Þ

u00ðxðNÞ
2 Þ
..
.

u00ðxðNÞ
N Þ

0BBBB@
1CCCCA; ðA:28Þ

where xðNÞ
i , i ¼ 1; . . . ;N , are now zeros of PN ðxÞ.

Before using the described technique to discretize (4) we make some remarks. In general uðxÞ does not

equal to
PNþ1

i¼0 aðNþ2Þ
i piðxÞ, but rather is approximated by this sum. For smooth uðxÞ this approximation is

very accurate, in fact, see [8], if uðxÞ 2 Cpþ1

½�1;1�, then

max
x2½�1;1�

uðxÞ
!!!!! �

XNþ1

i¼0

aðNþ2Þ
i piðxÞ

!!!!! ¼ O
1

Np

� �
:

If uðxÞ is analytic, as in our case, the approximation is super-linear, or spectral in N (cf. [8]). This means

that the approximation error eventually goes to zero faster than any power of N . This, in turn, implies that

a relatively small N is needed for a highly accurate approximation, which becomes very important for the

discretization in three spatial variables. This also implies that for sufficiently large N the difference betweenPN�1

i¼0 aðNÞ
i piðxÞ and

PNþ1

i¼0 aðNþ2Þ
i piðxÞ is negligible, where aN

i are defined via

uðxðNÞ
1 Þ
..
.

uðxðNÞ
N Þ

264
375 ¼

p0ðxðNÞ
1 Þ . . . pN�1ðxðNÞ

1 Þ
..
. . .

. ..
.

p0ðxðNÞ
N Þ . . . pN�1ðxðNÞ

N Þ

264
375 aN

0

..

.

aN
N�1

264
375; ðA:29Þ

and where xðNÞ
1 ; . . . ; xðNÞ

N are now the zeros of PN ðxÞ. Therefore, without affecting the overall accuracy we

replace aðNþ2Þ
0 ; . . . ; aðNþ2Þ

N�1 in (A.26) with aN
0 ; . . . ; a

N
N�1.

For this reason, from now on, we drop the subscripts and write a0; . . . ; aN�1 in (A.10) given approxi-

mately by

a0

..

.

aN�1

264
375 ¼

p0ðx1Þ . . . pN�1ðx1Þ
..
. . .

. ..
.

p0ðxN Þ . . . pN�1ðxN Þ

264
375

�1 uðx1Þ
..
.

uðxNÞ

264
375 ¼ P�1

uðx1Þ
..
.

uðxNÞ

264
375; ðA:30Þ

where x1; . . . ; xN are the zeros of PNðxÞ. With this understanding, it follows from (A.13), (A.29) and (A.30)

that, approximately,

u00ðx1Þ
..
.

u00ðxN Þ

264
375 ¼ PDPTW 2

uðx1Þ
..
.

uðxN Þ

264
375; ðA:31Þ

where P is the matrix of (A.30). We also remark that the above discretization technique can be extended to

the interval ½�T ; T � by the simple change of variable, xi ! Txi, i ¼ 1; . . . ;N . For notational convenience, we

use the same notation, xi, for the points mapped into ð�T ; T Þ. Taking everything into account gives us the

following discretization of (A.1):

� 1

T 2
½PDPTW 2�U þ a

x2
1 0

. .
.

0 x2
N

264
375U þ kU 3 ¼ kU ; ðA:32Þ



Y.-S. Choi et al. / Journal of Computational Physics 190 (2003) 1–21 19
where U ¼ ½uðx1Þ; . . . ; uðxN Þ�T and U 3 ¼ ½u3ðx1Þ; . . . ; u3ðxN Þ�T. Again, for the sake of simplicity, we use the

same notation uðxiÞ for the exact and the approximate values of the solution.

Let us consider now Eq. (A.32). The matrix PDPTW 2 is not symmetric in general. Symmetrization of the

equation is desirable. Multiplying Eq. (A.32) by
ffiffiffiffi
T

p
W on the left and introducing the notation

A ¼ � 1

T 2
½WPDPTW � þ a

x2
1 0

. .
.

0 x2
N

264
375; ðA:33Þ

we obtain

AV þ k
T
W �2V 3 ¼ kV ; ðA:34Þ

where V ¼
ffiffiffiffi
T

p
WU . Notice thatZ T

�T
u2ðtÞ dt ¼ T

XN
i¼1

uðxiÞ2w2
i

and hence,Z T

�T
u2ðtÞ dt ¼

XN
i¼1

v2
i :

Appendix B. Thomas–Fermi estimates

In (4) a parameter of nonlinearity k can range from 1 to 106. Large coefficients k correspond to the
Thomas–Fermi regime. In this regime D2u becomes negligible in the Gross–Pitaevskii equation

�D2uþ ðax2 þ by2 þ cz2Þuþ ku3 ¼ ku; ðB:1Þ

and hence approximately

ku2 ¼ k � ðax2 þ by2 þ cz2Þ

or

u2 ¼
1
k ðk � ðax2 þ by2 þ cz2ÞÞ if ax2 þ by2 þ cz2 6 k;
0 otherwise:

"
Since the norm of the solution is one we need k such that

1 ¼ 1

k

Z Z Z
ax2þby2þcz2 6 k

ðk � ðax2 þ by2 þ cz2ÞÞ dx dy dz: ðB:2Þ

To find k in the above equation first consider the double integralZ Z
ax2þby2 6 k

ðax2 þ by2Þ dx dy; ðB:3Þ

which corresponds to the case of two spatial variables. Geometrically, this means the volume of the elliptic

cylinder, Vc, of height k minus the volume of the elliptic paraboloid, Vp, truncated at the level ax2 þ by2 ¼ k.
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The area of the base ellipse,

ax2 þ by2 ¼ k

or

x2ffiffi
1
a

q� �2
þ y2ffiffi

1
b

q� �2
¼ 1;

is given by

AðkÞ ¼ p �

ffiffiffiffiffi
k2

ab

s
¼ kpffiffiffiffiffi

ab
p : ðB:4Þ

Thus

Vc ¼ k � kpffiffiffiffiffi
ab

p ¼ pffiffiffiffiffi
ab

p k2: ðB:5Þ

Also

Vp ¼
Z k

0

AðlÞ dl ¼ pffiffiffiffiffi
ab

p
Z k

0

l dl ¼ 1

2

pffiffiffiffiffi
ab

p k2;

and thereforeZ Z
ax2þby2 6 k

ðax2 þ by2Þ dx dy ¼ Vc � Vp ¼ p

2
ffiffiffiffiffi
ab

p k2 ¼ k; ðB:6Þ

from which k is easily found. Consider now

IðkÞ ¼
Z Z Z

ax2þby2þcz2 6 k
ðax2 þ by2 þ cz2Þ dx dy dz: ðB:7Þ

The volume of the ellipsoid ax2 þ by2 þ cz2 ¼ k or

x2ffiffi
k
a

q� �2
þ y2ffiffi

k
b

q� �2
þ z2ffiffi

k
c

q� �2
¼ 1 ðB:8Þ

is given by

V ðkÞ ¼ 4p
3

ffiffiffiffiffiffiffi
k3

abc

s
: ðB:9Þ

In a similar way we have

IðkÞ ¼ kV ðkÞ �
Z k

0

V ðlÞ dl ¼ 4p

3
ffiffiffiffiffiffiffi
abc

p k5=2: ðB:10Þ

Thus

k ¼ 4p

3
ffiffiffiffiffiffiffi
abc

p k5=2 � 4p

5
ffiffiffiffiffiffiffi
abc

p k5=2 ¼ 8p

15
ffiffiffiffiffiffiffi
abc

p k5=2 ðB:11Þ
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and the Thomas–Fermi approximation of k is

k ¼ 15k
8p

� �2=5

ðabcÞ1=5: ðB:12Þ

Note that in the case of spherical symmetry, a ¼ b ¼ c ¼ 1
2
;

k ¼ 1

2

15k
4p

� �2=5

:
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